

||Jai Sri Gurudev||

ADICHUNCHANAGIRI UNIVERSITY

BGS INSTITUTE OF TECHNOLOGY

BG Nagara – 571448 (Bellur Cross)

Nagamangala Taluk, Mandya District.

MICROCONTROLLER LABORATORY

MANUAL

18ECL47

For

IV Semester B.E.

2019-2020

DEPARTMENT OF

ELECTRONICS AND COMMUNICATION ENGINEERING

 Prepared by: Approved by:

1. Dr. Naveen B, Asso. Prof

2. Mrs. RAMYA K, Asst. Prof

3. Mr. GOUTHAM V, Asst. Prof Head of Department

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 2

DEPARTMENT OF ELECTRONICS & COMMUNICATION

ENFINEERING

VISION:

To develop high quality engineers with technical knowledge, skills and

ethics in the area of Electronics and Communication Engineering to

meet industrial and societal needs.

MISSION:

1. To provide high quality technical education with up-to-date

infrastructure and trained human resources to deliver the curriculum

effectively in order to impart technical knowledge and skills.

2. To train the students with entrepreneurship qualities, multidisciplinary

knowledge and latest skill sets as required for industry, competitive

examinations, higher studies and research activities.

3. To mould the students into professionally-ethical and socially-

responsible engineers of high character, team spirit and leadership

qualities.

PROGRAM EDUCATIONAL OBJECTIVES (PEO’s):

After 3 to 5 years of graduation, the graduates of Electronics and

Communication Engineering will;

1. Engage in industrial, teaching or any technical profession and pursue

higher studies and research.

2. Apply the knowledge of Mathematics, Science as well as Electronics

and Communication Engineering to solve social engineering problems.

3. Understand, Analyze, Design and Create novel products and solutions.

4. Display professional and leadership qualities, communication skills,

team spirit, multidisciplinary traits and lifelong learning aptitude.

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 3

MICROCONTROLLER LAB SYLLABUS

Course Learning Objectives:

This laboratory course enables students to

 Understand the basics of microcontroller and its applications.

 Have in-depth knowledge of 8051 assembly language programming.

 Understand controlling the devices using C programming.

 The concepts of I/O interfacing for developing real time embedded systems.

Laboratory Experiments

I. AL PROGRAMMING

1. Data Transfer: Block Move, Exchange, Sorting, Finding largest element in an array.

2. Arithmetic Instructions - Addition/subtraction, multiplication and division, square,

Cube – (16 bits Arithmetic operations – bit addressable).

3. Counters.

4. Boolean & Logical Instructions (Bit manipulations).

5. Conditional CALL & RETURN.

6. Code conversion: BCD – ASCII; ASCII – Decimal; Decimal - ASCII; HEX - Decimal

and Decimal - HEX.

II. INTERFACING

1. Write a C program to rotate Stepper motor control interface to 8051.

2. Write a C program to rotate DC motor control interface to 8051.

3. Write a C program for Elevator interface to 8051.

4. Write a C program for SEVEN SEGMENT DISPLAY.

5. Generate different waveforms Square, Triangular, using DAC interface to 8051; change

the frequency and amplitude.

Beyond Syllabus:

1. Write an ALP to generate the Delay.

2. Generate Sawtooth waveforms using DAC interface to 8051; change the frequency and

amplitude.

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 4

Course Outcomes:

On the completion of this laboratory course, the students will be able to:

1. Analyze 8051 assembly level programs to perform data transfer, arithmetic,

Boolean and logical operations.

2. Analyze 8051 assembly level programs to perform counter operation along

with conditional call and return operation.

3. Analyze 8051 assembly level programs to perform code conversion

operation like BCD, ASCII, decimal and Hex operation.

4. Demonstrate the interfacing of 8051 C Programs with Stepper Motor, DC

Motor, Elevator Interface, and 7 segment displays.

5. Demonstrate the interfacing of 8051 C Programs to generate different

square, Triangular waveform using DAC.

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 5

ALGORITHM

1. Initialize registers to hold count data & also the source & destination addresses

2. Get data from source location into accumulator and transfer to the destination

 Location word by word.

3. Decrement the count register and repeat step 2 till count is zero.

 Note: For data transfer with overlap start transferring data from the last location of

 source array to the last location of the destination array.

RESULT :

Content of source array before execution Content of source array before execution

Content source array after execution Content destination array after execution

20h

21h

22h

23h

24h

25h

26h

27h

28h

29h

01

02

03

04

05

06

07

08

09

0A

30h

31h

32h

33h

34h

35h

36h

37h

38h

39h

00

00

00

00

00

00

00

00

00

00

20h

21h

22h

23h

24h

25h

26h

27h

28h

29h

01

02

03

04

05

06

07

08

09

0A

30h

31h

32h

33h

34h

35h

36h

37h

38h

39h

01

02

03

04

05

06

07

08

09

0A

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 6

1. Write an ALP to transfer of block of data from one location to

another location.

 Org 000h

 mov r2,#0ah //count

mov r0,#20h //source address

mov r1,#30h //destination address

 loop1: mov a,@r0

mov @r1,a

inc r0

inc r1

djnz r2, loop1

here: sjmp here

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 7

ALGORITHM

1. Initialize registers to hold count data & also the source & destination of last

 addresses.

2. Get data from source location into accumulator and transfer to the destination

location.

3. Decrement the count register and repeat step 2 till count is zero.

Note: For data transfer with overlap start transferring data from the last location of

 source array to the last location of the destination array.

 RESULT :

Content of source array before execution Content of source array before execution

Content source array after execution Content destination array after execution

30h

2Fh

2Eh

2Dh

2Ch

2Bh

2Ah

29h

28h

27h

00

00

00

00

00

00

00

00

00

00

20h

21h

22h

23h

24h

25h

26h

27h

28h

29h

01

02

03

04

05

06

07

08

09

0A

30h

2Fh

2Eh

2Dh

2Ch

2Bh

2Ah

29h

28h

27h

0A

09

08

07

06

05

04

03

02

01

20h

21h

22h

23h

24h

25h

26h

27h

28h

29h

01

02

03

04

05

06

07

08

09

0A

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 8

2. Write an ALP to transfer of block of data from one location to other

location with overlap.

org 00h

mov r2,#0ah //count

mov r0,#29h //source address

mov r1,#30h //destination address

 loop1: mov a,@r0

mov @r1,a

dec r0

dec r1

djnz r2,loop1

here: sjmp here

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 9

ALGORITHM

1. Initialize registers to hold count data (array size) & also the source & destination

addresses.

2. Get data from source location into accumulator and save in a register.

3. Get data from the destination location into accumulator.

4. Exchange the data at the two memory locations.

5. Decrement the count register and repeat from step 2 to 4 till count is zero.

RESULT :

Content of source array before execution Content of source array before execution

Content source array after execution Content destination array after execution

3. Write an ALP to perform Exchange of block of data between two

memory location.

50h

51h

52h

53h

54h

55h

56h

57h

58h

59h

01

02

03

04

05

06

07

08

09

0A

70h

71h

72h

73h

74h

75h

76h

77h

78h

79h

11

22

33

44

55

66

77

88

99

AA

70h

71h

72h

73h

74h

75h

76h

77h

78h

79h

01

02

03

04

05

06

07

08

09

0A

50h

51h

52h

53h

54h

55h

56h

57h

58h

59h

11

22

33

44

55

66

77

88

99

AA

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 10

org 00h

mov r2,#0ah

mov r0,#50h

mov r1,#70h

 loop1: mov a,@r0

xch a,@r1

mov @r0,a

inc r0

inc r1

djnz r2,loop1

here: sjmp here

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 11

ALOGORITHM:

1. Take lower byte of 16 bit number on register A add with lower byte of

second number.

2. Store the result in some register

3. Take the higher byte of 16 bit number on register A add with carry with

higher byte of second number.

4. Store the result in some register

RESULT :

Content of reference registers Content of reference registers

 - before execution -after execution

[A] = 3Ch [A] =BAh

[A] +[DF] = 1Bh [A] + [04h] = BFh

[A] = 1Bh [A] = [BFh]

[R0] = 1Bh [A] = BFh

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 12

4.Write an ALP to perform 16 bit addition.

org 00h

clr c

mov a,#03Ch

add a,#0DFh

mov r0,a

mov a,#0BAh

addc a,#04h

mov r1,a

here: sjmp here

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 13

ALOGORITHM:

1. Take lower byte of 16 bit number on register A add with lower byte of second

number

2. Store the result in some register

3. Take the higher byte of 16 bit number on register A add with carry with higher byte

of second number.

4. Store the result in some register.

RESULT :

Content of reference registers Content of reference registers

- before execution - after execution

[A] = 00h [A] =75h

 [A] - [48h] = 2dh

 [A] = 2dh

 [A] = 2dh

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 14

5.Write an ALP to perform 16 bit Subtraction.

org 00h

clr c

mov a,#53h

subb a,#58h

mov r0,a

mov a,#48h

subb a,#22h

mov r1,a

here: sjmp here

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 15

ALGORITHM

1. Store the elements of the array from the address.

2. Store the length of the array in and set it as counter.

3. Register is loaded with starting address of the array.

4. Store the first number of the array in b (b is assigned to hold the largest number).

5. Increment Register.

6. Subtract the number pointed by Register from the contents of b (to compare

whether the next array element is larger than the one in b).

7. If the element pointed by Register is larger then load the larger number into b.

8. Decrement the counter and repeat steps through 5 until the counter becomes 0.

RESULT :

 Content of source array before execution Content of reference registers

 -after Execution

 R4 =0Ah

20h

21h

22h

23h

24h

25h

26h

27h

28h

29h

01

02

03

04

05

06

07

08

09

0A

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 16

6. Write an ALP to find largest number in an array

org 00h

mov r5,#0ah

mov r0,#20h

mov b,#00h

repeat:mov a,@r0

 cjne a,b,ne1

 ne1:jc loop1

mov b,a

inc r0

djnz r5,repeat

sjmp exit

loop1:inc r0

djnz r5,repeat

 exit:mov a,b

mov r4,a

here: sjmp here

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 17

ALGORITHM

1. Store the condition x in r1.

2. Load the first and second numbers to A and B registers respectively

3. Compare the contents of r1 and perform the operations add, sub, etc accordingly.

Store the result present in A and B registers to the appropriate memory locations.

RESULT:

a) AND OPERATION

 Content of reference registers after execution
 [R0] = 34h

[A] = 0Fh

[P0] = 04h

 b) OR OPERATION

 Content of reference registers after execution

 [R0] = 34h

 [A] = 0F0h

 [P1] = F4h

 c) XOR OPERATION

 Content of reference registers after execution
 [R0] = 34h

 [A] = 0Fh

 [P2] = 3bh

 d) 1’S COMPLEMENTS

Content of reference registers after execution

 [A] + [R0] = 34h

 [P0] = cbh

 e) 2’S COMPLEMENTS

 After Execution

 [A] + [R0] = 34h

 [P0] = cch

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 18

7. Write an ALP to perform the following logical operation.

a) AND b) OR c) XOR d) Complements

org 00h

mov r0,#34h

call and1

call or1

call xor1

call comp

here: sjmp here

 and: mov a,#0fh

anl a,r0

mov p0,a

ret

 or1: mov a,#0fh

orl a,r0

mov p1,a

ret

 xor1: mov a,#0fh

xrl a,r0

mov p2,a

ret

comp: mov a,r0

cpl a

add a,#01h

mov p3,a

ret

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 19

ALOGORITHM:

1. Take the given number in some register.

2. Initiate two register to count zeros and ones.

3 .Take the given number in register A.

4. Rotate the content of A either towards left or right through carry flag.

5. If the carry flag is one increment the content of one’s register by one, else zero

 register

6. Repeat the above steps for 8 times.

RESULT:

 Content of reference registers after execution

 1. [A] = 31h

 [R0] = 05h

 [P0] = 03h

 2. [A] = 99h

 [R0] = 04h

 [P0] = 04h

 3. [A] = 03h

 [R0] = 02h

 [P0] = 06h

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 20

8. Write an ALP to find the number of 1’s and 0’s in a byte.

org 00h

mov r0,#00h

mov r1,#00h

mov r2,#08h

mov a,#31h

repeat: rrc a

jnc loop1

inc r1

sjmp exit

loop1: inc r0

 exit: djnz r2,repeat

here: sjmp here

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 21

ALGORITHM:

1. Move 00 to r2 register

2. Increment the content of register by one

3. After each count call delay subroutine

4. Compare the content of r2 with 0FH

5. Reload r2 with 00 repeat step 2 as specified above.

RESULT:

Content of reference registers before execution Content of registers after execution

R2 =

00h

01h

02h

03h

04h

05h

06h

07h

08h

09h

0Ah

0Bh

0Ch

0Dh

0Eh

0Fh

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 22

9. Write an ALP to perform the 4 bit Up Counter operation.

org 00h

mov r2,#00h

 up: inc r2

 cjne r2,#0fh,loop1

 Acall delay

 mov r2,#00h

 loop1: Acall delay

sjmp up

 delay : mov r0,#0ffh

 l3: mov r1,#0ffh

 l2: mov r3,#0ffh

 l1: djnz r3,l1

 djnz r1,l2

 djnz r0,l3

ret

 here: sjmp here

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 23

ALGORITHM:

1. Load initially r2 register with 0fh.

2. Decrement the content of register by one

3. After each count call delay subroutine

4. Campare the content of r2 with 00h

5. Reload r2 with 0fh repeat step 2 as specified above.

RESULT:

Content of reference registers before execution Content of registers after execution

 R2 =

10. Write an ALP to perform the 4 bit Down Counter operation.

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

0Fh

0Eh

0Dh

0Ch

0Bh

0Ah

09h

08h

07h

06h

05h

04h

03h

02h

01h

00h

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 24

org 00h

mov r2,#ofh

down:dec r2

cjne r2,#00h,loop1

Acall delay

mov r2,#0fh

loop1: Acall delay

 sjmp down

delay : mov r0,#0ffh

 l3: mov r1,#0ffh

 l2: mov r3,#0ffh

 l1: djnz r3,l1

 djnz r1,l2

 djnz r0,l3

ret

here: sjmp here

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 25

ALGORITHM:

1. Move 00 to r2 register

2. Increment the content of register by one

3. After each count call delay subroutine

 4. Compare the content of r2 with 0fh

5. If it is 0Fh decrement by 1.

6. When r2 register becomes 00h repeat step 2 as specified above.

RESULT:

 Content of registers after execution

 Up counter sequence Down Count Sequence

11. Write an ALP to perform the 4 bit Up-Down Counter operation.

00h

01h

02h

03h

04h

05h

06h

07h

08h

09h

0Ah

0Bh

0Ch

0Dh

0Eh

0Fh

0Fh

0Eh

0Dh

0Ch

0Bh

0Ah

09h

08h

07h

06h

05h

04h

03h

02h

01h

00h

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 26

org 00h

mov r2,#00h

 up:inc r2

cjne r2,#0fh,loop1

sjmp down

loop1:Acall delay

sjmp up

loop2:Acall delay

 sjmp down

down:dec r2

cjne r2,#00h,loop2

Acall delay

sjmp up

 delay : mov r0,#0ffh

 l3: mov r1,#0ffh

 l2: mov r3,#0ffh

 l1: djnz r3,l1

 djnz r1,l2

 djnz r0,l3

ret

here: sjmp here

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 27

Algorithm:

1. Move 00 to r2 register

2. Increment the content of register by one

3. After each count call delay subroutine

4. Compare the content of r2 with 0ffh

 5. Repeat step 1

RESULT:

Content of reference registers before execution Content of registers after execution

 R2 =

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

01h

02h

03h

04h

05h

06h

07h

08h

09h

0Ah

0Bh

0Ch

0Dh

0Eh

0Fh

10h

11h

12h

0FFh

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 28

12. Write an ALP to perform the 8 bit Up Counter operation.

org 00h

mov r2,#00h

 up:inc r2

 Acall delay

 cjne r2,#0ffh,loop1

 Acall delay

 mov r2,#00h

 loop1:sjmp up

 delay : mov r0,#0ffh

 l3: mov r1,#0ffh

 l2: mov r3,#0ffh

 l1: djnz r3,l1

 djnz r1,l2

 djnz r0,l3

ret

here: sjmp here

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 29

ALGORITHM:

1. Move 0ff to r2 register

2. Increment the content of register by one

3. After each count call delay subroutine

4. Compare the content of r2 with 00h

5. Repeat step 1

RESULT:

Content of reference registers before execution Content of registers after execution

 R2 =

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

00h

0FFh

0FEh

0FDh

0FCh

0FBh

0FAh

0F9h

0F8h

0F7h

0F6h

0F5h

0F4h

0F3h

0F2h

0F1h

00h

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 30

13. Write an ALP to perform the 8 bit Down Counter operation.

org 00h

mov r2,#offh

down:dec r2

cjne r2,#00h,loop1

mov r2,#0ffh

loop1:Acall delay

sjmp down

 delay : mov r0,#0ffh

 l3: mov r1,#0ffh

 l2: mov r3,#0ffh

 l1: djnz r3,l1

 djnz r1,l2

 djnz r0,l3

ret

here: sjmp here

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 31

ALGORITHM:

1. Move 00 to r2 register

2. Increment the content of register by one

3. After each count call delay subroutine

4. Compare the content of r2 with 0fh

5. If it is 0ffh decrement count value by 1.

RESULT:

Content of reference registers before execution Content of registers after execution

00h

01h

02h

03h

04h

05h

06h

07h

08h

09h

0Ah

0Bh

0Ch

0Dh

0Eh

0Fh

0FFh

0FFh

0FEh

0FDh

0FCh

0FBh

0FAh

0F9h

0F8h

0F7h

0F6h

0F5h

0F4h

0F3h

0F2h

0F1h

00h

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 32

14. Write an ALP to perform the 8 bit Up-Down Counter operation.

org 00h

mov r2,#00h

 up: inc r2

 Acall delay

cjne r2,#0ffh,loop1

Acall delay

sjmp down

loop1:sjmp up

loop2:sjmp down

down:dec r2

Acall delay

cjne r2,#00h,loop2

Acall delay

sjmp up

 delay : mov r0,#0ffh

 l3: mov r1,#0ffh

 l2: mov r3,#0ffh

 l1: djnz r3,l1

 djnz r1,l2

 djnz r0,l3

ret

here: sjmp here

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 33

ALGORITHM:

1. load accumulator with the code to be test present in memory 50h.

2. perform logical AND between A and 0e0h and jump if no zero to check remaining

 lower 5 bits otherwise move A=00h and halt.

3. Rotate left along with carry 5 times and check each time carry is generated and if

increment R1 and last check with 2 if equal move A=FFh otherwise A=00h

RESULT:

Content of reference registers before execution Content of registers after execution

1. [50h] = 18 [A] = FFh

2. [50h] = 02 [A] = 00h

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 34

15. Write an ALP to find whether the given code is 2 out of 5 or not. If

 code is valid display FF or else display 00

org 00h

 mov r0,#05h

mov r2,#50h

 mov r1,#00h

 mov a,@r2

 anl a,#0e0h

jnz loop2

mov a,@r2

repeat:rlc a

jnc loop1

inc r1

loop1:djnz r0,repeat

cjne r1,#02h,loop2

mov a,#0ffh

sjmp here

loop2:mov a,#00h

 here: sjmp here

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 35

ALGORITHM:

1. Initialize counter value as per the length of series to be generated and specify the

memory location to store the generated series via a register.

2. Fill the first two memory location with 00h and 01h and decrement counter value

by 2

3. Decrement memory location by 2 and load the value of memory in register1 and

increment memory location by one and load the content of this location in register2

and perform addition operation between the two registers.

4. Increment memory location and put the result in this location.

5. After each addition and storage decrement counter and STEP 3 until counter

becomes zero.

6. Halt the the program.

RESULT:

Content of reference memory array before execution Content of array after execution

20h

21h

22h

23h

24h

25h

26h

27h

28h

29h

2Ah

2Bh

00h

01h

01h

02h

03h

05h

08h

0Dh

15h

22h

37h

59h

20h

21h

22h

23h

24h

25h

26h

27h

28h

29h

2Ah

2Bh

00h

01h

01h

02h

03h

05h

08h

13h

21h

34h

55h

89h

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 36

16. Write an ALP to generate Fibonacci Series with certain range.

org 00h

mov r2,#0ah

mov r0,#20h

mov @r0,#00h

inc r0

mov @r0,#01h

repeat: mov a,@r0

dec r0

add a,@r0

 inc r0

inc r0

mov @r0,a

djnz r2,repeat

here: sjmp here

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 37

ALGORITHM:

1. Load the memory content into Accumulator By using indirect addressing mode

2. Perform AND operation between Acc and immediate number 0Fh and add 30h to the

 accumulator and save the result in R3 register.

3. Repeate step 1

4. Perform AND operation between Accumulator and immediate number 0F0h and

rotate left or right 4 times and ADD 30h to Acc and save the result in R4 register..

RESULT:

 Content of reference registers before execution Content of registers after execution

 [A] = 35h [A] = 35h

 [R3] = 35h

 [R4] = 33h

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 38

17. Write an ALP to convert packed BCD number to ASCII.

org 00h

mov r0,#40h

mov a,@r0

mov r2,a

anl a,#0fh

orl a,#30h

mov r3,a

mov a,r2

anl a,#0f0h

swap a

orl a,#30h

mov r4,a

here: sjmp here

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 39

ALGORITHM:

1. Initialize registers to hold count data (array size) & also the source & destination

 addresses.

2. Get data from source location into accumulator and ADD 30h to it and put in

 destination memory location.

3. Decrement counter and Increment source and destination memory location and

repeat STEP 2 until counter becomes zero.

4. Halt the program.

RESULT:

 Content of reference registers before execution Content of registers after execution

20h

21h

22h

23h

24h

00h

01h

05h

09h

08h

30h

31h

32h

33h

34h

00h

00h

00h

00h

00h

20h

21h

22h

23h

24h

00h

01h

05h

09h

08h

30h

31h

32h

33h

34h

30h

31h

35h

39h

38h

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 40

18. Write an ALP to convert Decimal number to ASCII.

org 00h

mov r0,#20h

mov r1,#30h

mov r2,#05h

 repeat:mov a,@r0

orl a,#30h

mov @r1,a

inc r0

inc r1

djnz r2,repeat

here: sjmp here

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 41

ALGORITHM:

1. Load one ASCII code into Acc and perform Logical XOR operation between Acc

 and immediate data 30h and store the result in register

2. Load other ASCII code into ACC and perform Logical XOR operation between

Accumulator and immediate data 30h and rotate the result left or right 4 times and

store the result in register

3. ADD the result obtain in STEP 1 and STEP 2

4. Halt the program.

RESULT:

 Content of registers after execution

 [A] = 32h

 [R2] = 02h

 [A] = 33h

 [A] = 23h

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 42

19. Write an ALP to convert two ASCII digits into one equivalent

packed

 BCD number.

org 00h

mov r0,#40h

mov a,@r0

xrl a,#30h

mov r2,a

mov a,#33h

xrl a,#30h

swap a

add a,r2

here: sjmp here

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 43

ALGORITHM:

1. Initialize registers to hold count data (array size) & also the source & destination

addresses.

2. Get data from source location into accumulator and perform logical XOR operation

between ACC and immediate data 30h and store the result in destination address.

3. Decrement counter and increment source and destination addresses

4. Repeat STEP 2 and STEP 3 until counter becomes zero.

5. Halt the program.

RESULT:

Content of reference registers before execution Content of registers after execution

20h

21h

22h

23h

24h

30h

32h

33h

36h

38h

30h

31h

32h

33h

34h

00d

02d

03d

06d

08d

20h

21h

22h

23h

24h

30h

32h

33h

36h

38h

30h

30h

30h

30h

30h

00h

00h

00h

00h

00h

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 44

20. Write an ALP to convert ASCII number to Decimal equivalent.

org 00h

mov r2,#05h

mov r0,#20h

mov r1,#30h

repeat: mov a,@r0

xrl a,#30h

mov @r1,a

inc r0

inc r1

djnz r2,repeat

here: sjmp here

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 45

ALGORITHM:

1. Load decimal data to be converted to hexa into Acc.

2. Perform division of Acc with 10H stored in B register.

3. perform addition of Acc and B register.

4.Store the result in Destination location.

5. Halt the the Program.

RESULT:

 Content of reference registers before execution Content of registers after execution

 [A] = 25 in decimal [A] = 19h

 [B] = 10h in hexadecimal

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 46

21. Write an ALP to convert a Decimal number to equivalent

Hexadecimal number.

org 00h

mov a,#25

mov b,#10h

div ab

swap a

add a,b

mov r2,a

here: sjmp here

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 47

ALGORITHM:

1. Load the data to be swapped into Acc and save this data in some other register for

further manipulation.

2. Initialize two counter each one is loaded with 04h immediate value.

3. Perform AND operation between ACC and immediate value 0fh and perform rotate

operation .

4. For every rotation decrement one counter and repeat rotation until counter becomes

zero and save this result in Register(say R2).

5. Load Acc With the value Saved in STEP 1 and repeat Step 3

6. For every rotation decrement another counter and repeat rotation until other counter

becomes zero and save this result in other Register(say R3)

7. ADD the register contents obtain in STEP 4 and STEP 6(i.e R2 and R3)

8. Halt the program.

RESULT:

Content of reference registers before execution Content of registers after execution

[A] = 35h [A] = 53h

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 48

22. Write an ALP to reverse a number without using SWAP instruction.

org 00h

mov r2,#04h

mov r4,#04h

mov r3,#35h

mov a,r3

anl a,#0fh

repeat1:rl a

djnz r2,repeat1

mov r1,a

mov a,r3

anl a,#0f0h

 repeat2:rr a

djnz r4,repeat2

add a,r1

mov r5,a

here: sjmp here

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 49

ALGORITHM:

1. Load the value in Accumulator which should be performed cubic operation.

2. Load the same value in B register and perform multiplication of Accumulator and B

 register

3. Compare the content of r2 with 0fh

4. If it is 0Fh decrement by 1.

RESULT:

 Content of reference registers before execution Content of registers after execution

 [A] = FFh [R4] = FFh

 [B] = FFh [R6] = 02h

 [R7] = Fdh

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 50

23. Write an ALP to find cube of 8-bit number.

org 00h

mov a,#0ffh

mov b,#0ffh

mov r2,b

mul ab

mov r3,b

mov b,r2

mul ab

mov r4,a

mov r5,b

mov b,r3

mov a,r2

mul ab

add a,r5

mov r6,a

mov r7,b

here: sjmp here

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 51

ALGORITHM:

1. Load the Accumulator with the value to be converted into decimal.

2. Load B register with the immediate value 0Ah.

3. Perform division operation between Accumulator and B register.

4. Save the value of B register obtain after division in some register (say R2)

5. Load again B register with immediate value 0Ah.

6. Again perform division between Accumulator and B register.

7. Save the values of B register and Accumulator in some registers (say R3 and R4)

8. The values present in R2, R3 and R4 gives decimal numbers.

RESULT:

 Content of reference registers before execution Content of registers after execution

 [A] = FFh [A] = FFh

 [B] = 0Ah [R4] = 02

 [R3] = 05

 [R2] = 05

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 52

24. Write an ALP to convert Hexadecimal to decimal conversion.

org 00h

mov a,#0ffh

mov b,#0ah

div ab

mov r2,b

mov b,#0ah

div ab

mov r3,b

mov r4,a

here: sjmp here

end

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 53

INTERFACING

1. Write an 8051 C Program to interface Elevator.

#include<reg52.h>

#define DATA_BUS P2 //CONSIDER PORT2 AS DATA BUS

#define ADD_BUS P0 //CONSIDER PORT0 AS ADDRESS BUS

 void main(void)

{

 unsigned char cur_flr, next_flr,temp;

 //VARIABLES DECLARATION

 void delay_msec(unsigned int count); //DELALY ROUTINE

 void lssd(unsigned char temp);

 //LSSD DISPLAY ROUTINE

 cur_flr = 0;

 //INITIALIZE CURRENT FLOOR WITH 00H

 next_flr = cur_flr; //AT THE BEGINING

 ASSUME CURRENT FLOOR IS EAUAL TO NEXT FLOOR

 DATA_BUS = 0xC0;

 //PLACE 0C0H(SEVEN SEGMENT ECODE FALUE FOR

 ZERO) ON DATA BUS TO DISPLAY 0

 ADD_BUS = 0x01;

 //ENABLE THE FIRST SEVEN SEGMENT DISPLAY TO

 DISPLAY 0 ON IT

 ADD_BUS = 0xFF;

 //DISABLE ALL PERIPHERAL DEVICES.

 while(1)

 {

 DATA_BUS = 0xFF;

 //CONFIGURE DATA BUS AS INPUT PORT TO READ

 FLOOR VALUE

 ADD_BUS = 0x20; //ENABLE THE ELEVATOR

 TO READ FLOOR VALUE

 temp = DATA_BUS; //READ THE

 FLOOR VALUE

 ADD_BUS = 0XFF; //DISABLE ALL

 PERIPHERAL DEVICE.

 if(temp != 0xff) //IF FLOOR IS

 SELECTED

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 54

 {

 switch(temp)

 {

 case 0xFE: //IS FLOOR0 CONNECTED TO P2.0

 next_flr = 0x00;

 break;

 case 0xEF: //IS FLOOR1 CONNECTED TO P2.4

 next_flr = 0x01;

 break;

 case 0xFD: //IS FLOOR2 CONNECTED TO P2.1

 next_flr = 0x02;

 break;

 case 0xDF: //IS FLOOR3 CONNECTED TO P2.5

 next_flr = 0x03;

 break;

 case 0xBF: //IS FLOOR4 CONNECTED TO P2.6

 next_flr = 0x04;

 break;

 case 0xFB: //IS FLOOR5 CONNECTED TO P2.2

 next_flr = 0x05;

 break;

 case 0xF7: //IS FLOOR6 CONNECTED TO P2.3

 next_flr = 0x06;

 break;

 case 0x7F: //IS FLOOR7 CONNECTED TO P2.7

 next_flr = 0x07;

 }

 }

 while(cur_flr != next_flr) //CONTINURE UNTIL

CURRENT FLOOR IS NOT EQUAL TO NEXT FLOOR VALUE

 {

 if(cur_flr < next_flr) //IF CURRENT

FLOOR VALUE IS LESS THAN NEXT FLOOR VALUE

 {

 cur_flr = cur_flr + 1; //THEN

INCREMENT THE CURRENT FLOOR VALUE

 }

 else

 //IF CURRENT FLOOR VALUE IS GREATER

THAN NEXT FLOOR VALUE

 {

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 55

 cur_flr = cur_flr - 1; //THEN DECREMENT THE

CURRENT FLOOR VALUE

 }

 delay_msec(500);

 //DELAY ROUTINE WITH 500msec DEALY

 lssd(cur_flr);

 //DISPLAY THE CURRENT FLOOR VALUE.

 }

 }

}

/*--

FUNCTION NAME : SEVEN SEGMENT DISPLAY

ROUTINE

DESCRIBITION : IN THIS FUNCTION, BCD VALUE

FROM 0 TO 7 CAN BE DISPLAYED ON THE

 SELECTED

SEVEN SEGMENT DISPLAY

---*/

 void lssd(unsigned char cur_flr)

{

 unsigned char

bcd[8]={0xC0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8}; //ENCODED

SEVEN SEGMENT ARRAY FROM 0 TO 7

 unsigned char i = 0;

 while(1)

 {

 if(i == cur_flr) //SELECT POSITION OF

SEVEN SEGMENT ENDCODED VALUE CORRESPONDING

CUR_FLR VALUE

 {

 break;

 }

 i++;

 }

 DATA_BUS = bcd[i]; //PLACED SEVEN SEGMENT

ENCODED VALUE ON THE DATA BUS

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 56

 ADD_BUS = 0x01; //ENABLE FIRST SEVEN

SEGMENT DISPLAY TO DISPLAY CUR_FLR VALUE

 ADD_BUS = 0xff; //DISABLE ALL

PERIPHERAL DEVCIES

}

/*--

FUNCTION NAME : TIMER0 AS DELAY

GENERATOR

DESCRIBITION : IN THIS FUNCTION, TIMER/COUNTER0

IS CONFIGURED AS DELAY GENERATOR WITH

 RESOLUTION OF 1 msec.

 NOTE:

CLOCK/CYCLE = 6

 TH0TL0 =

65536 - ((11.0592 X 10^6) X DELAY

RESOLUTION)/(CLOCK/CYCLE)

 IF DELAY

RESOLUTION = 1 msec. AND CLOCK/CYBLE=6

 THEN

TH0TL0 = 65536 - (11.0592 X 10^6) X 1X10^3)/6 = F8CCH

---*/

 void delay_msec(unsigned int count)

{

 unsigned int i;

 TMOD = 0X01;

 //CONFIGURE TIMER/COUNTER0 AS TIMER FOR

MODE1(16-BIT COUNT)

 TR0 = 1;

 //START TIMER0

 for(i = 0; i < count; i++) //LOOP AS LONG AS REQUIRED

DELAY IS ATTAINED

 {

 TH0 = 0XF8;

 //ASSIGN VALUE TO TIMER0 REGISTER TO GENERATE

1 mSEC DELAY

 TL0 = 0XCC;

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 57

 while(!TF0);

 //LOOP HERE UNTIL TIMER0 OVERFLOW FLAG GETS

SET

 TF0 = 0;

 //CLEAR TIMER0 OVERFLOW FLAG TO CHECK NEXT

OVERFLOW

 }

 TR0 = 0;

 //STOP TIMER0

}

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 58

2. Write an 8051 C Program to rotate the Stepper motor in clockwise

 & anticlockwise direction.

#include <reg52.h>

 void main(void)

{

 char i,full_step[4] = {0x0A,0x09,0x05,0x06}; //Declare

Full-Step Array

 void delay_msec(unsigned int count);

 //Delay Routine Declaration with 1msec resolution

 while(1)

 //Execute while body for infinite time

 {

 for(i = 3;i >= 0; i--)

 // select pulse location of Full-Step

Array

 {

 P2 = full_step[i];

 //Place Full-Step Pulse

on Data Bus

 P0 = 0x07;

 //Place 07H

SM address on Address Bus to latch Pulse available on Data Bus

 P0 = 0XFF;

 //Disable

SM latch

 delay_msec(3);

 //Call Delay

Routine to generate delay.

 }

 }

}

/*--

FUNCTION NAME : TIMER0 AS DELAY GENERATOR

DESCRIBITION : IN THIS FUNCTION, TIMER/COUNTER0

IS CONFIGURED AS DELAY GENERATOR WITH

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 59

 RESOLUTION

OF 1 msec.

 NOTE:

CLOCK/CYCLE = 6

 TH0TL0 = 65536 -

((11.0592 X 10^6) X DELAY RESOLUTION)/(CLOCK/CYCLE)

 IF DELAY

RESOLUTION = 1 msec. AND CLOCK/CYCLE=6

 THEN TH0TL0 =

65536 - (11.0592 X 10^6) X 1X10^3)/6 = F8CCH

---*/

 void delay_msec(unsigned int count)

{

 unsigned int i;

 TMOD = 0X01;

 //Configure Timer/Counter0 as timer for mode1(16-bit count)

 TR0 = 1;

 //Start Timer0

 for(i = 0; i < count; i++)//Loop as long as required delay

is attained

 {

 TH0 = 0XF8;

 //Assign value to Timer0 register to generate 1 msec delay

 TL0 = 0XCC;

 while(!TF0);

 //Loop here until Timer0 overflow flag gets set

 TF0 = 0;

 //Clear Timer0 overflow flag to check next overflow

 }

 TR0 = 0;

 //Stop Timer0

}

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 60

3. Write an 8051 C Program to rotate the D.C motor in Clockwise &

 anticlockwise direction.

 #include<reg52.h>

#define DATA_BUS P2

#define ADD_BUS P0

void main(void)

{

 void delay_msec(unsigned int count);

 while(1)

 {

 DATA_BUS = 1;

 ADD_BUS = 0X07;

 ADD_BUS = 0XFF;

 delay_msec(90);

 DATA_BUS = 0x00;

 ADD_BUS = 0X07;

 ADD_BUS = 0XFF;

 delay_msec(10);

 }

}

void delay_msec(unsigned int count)

{

 unsigned int i;

 TMOD = 0X01;

 TR0 = 1;

 for(i = 0; i < count; i++)

 {

 TH0 = 0XF8;

 TL0 = 0XCD;

 while(!TF0);

 TF0 = 0;

 }

}

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 61

4. Write an ALP to generate a Triangular wave using DAC.

#include"reg52.h"

#include"intrins.h"

#define ADD_BUS P0 //ADDRESS BUS

#define DAC_ADD 0X21 //DAC ADDRESS

sbit P20=P2^0;

sbit P21 =P2^1;

sbit P22=P2^2;

sbit P23=P2^3;

sbit P24=P2^4;

sbit P25=P2^5;

sbit P26=P2^6;

sbit P27=P2^7;

sbit P30=P3^0;

sbit P31=P3^1;

sbit P32=P3^2;

sbit P33=P3^3;

sbit P34=P3^4;

sbit P35=P3^5;

sbit P36=P3^6;

sbit P37=P3^7;

 void main(void)

{

 unsigned char count = 0; //DELCARE COUNT VARIABLE AS

 UNSIGNED CHARACTER TYPE

 bit flag = 1; //FLAG IS NEED TO SELECT POSTIVE

 AND NEGATIVE OF HALF CYCLE

 ADD_BUS = DAC_ADD; //ENABLE THE DAC TO ASSIGN

 DIGITAL DATA WHICH IS PLACE ON THE DATA BUS

 while(1)

 {

 P3 = count; //ASSIGN COUNT VALUE TO P3

 P20 = P37; //ASSIGN P3.7 VALUE TO P2.0

 BECAUSE P2.0 IS HAVING HIGHEST WEIGHT

 P21 = P36; //ASSIGN P3.6 VALUE TO P2.1

 P22 = P35; //ASSIGN P3.5 VALUE TO P2.2

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 62

 P23 = P34; //ASSIGN P3.4 VALUE TO P2.3

 P24 = P33; //ASSIGN P3.3 VALUE TO P2.4

 P25 = P32; //ASSIGN P3.2 VALUE TO P2.5

 P26 = P31; //ASSIGN P3.1 VALUE TO P2.6

 P27 = P30; //ASSIGN P3.0 VALUE TO P2.7

 if(flag) //IF FLAG IS SET INDCATES

 STILL COUNT VALUE IS NOT INCREASED TO FFH

 {

 count++; //SO INCREASE THE COUNT VALUE

 if(count==0xff) // IF COUNT VALUE IS EQUAL TO FFH

 {

 flag = 0; //REESET THE FLAG

 }

 }

 else

 {

 count--; //IF FLAG IS RESET INDICATES

 COUNT VALUE IS NOT DECREASED TO 00H

 if(count == 0) //IF COUNT VALUE IS EQUAL TO 00H

 {

 flag = 1; //SET THE FLAG

 }

 }

 }

}

Output :

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 63

5. Write an ALP to generate a Square wave using DAC.

#include"reg52.h"

#define ADD_BUS P0 //ADDRESS BUS

#define DATA_BUS P2 //DATA BUS

#define DAC_ADD 0X21 //DAC ADDRESS

#define DISABLE 0XFF // ADDRESS VALUE DISABLE

 ALL PERIPERHAL DEVICES

 void main(void)

{

 void delay_msec(unsigned int count);

 ADD_BUS = DAC_ADD; //ENABLE THE DAC TO ASSIGN

 DIGITAL DATA WHICH IS PLACE ON THE DATA BUS

 while(1)

 {

 DATA_BUS = 0X00; //PLACE 00H ON THE DATA

 BUS TO GENERATE ACTIVE LOW PULSE

 delay_msec(5); //APPLY ONE MILLISECOND

 DELAY AS ACTIVE LOW PULSE WIDTH

 DATA_BUS = 0XFF; //PLACE FFH ON THE DATA BUS

 TO GENERATE ACTIVE HIGH PULSE

 delay_msec(5); //APPLY ONE MILLISECOND

 DELAY AS ACTIVE HIGH PULSE WIDTH

 }

}

/*---

FUNCTION NAME : TIMER0 AS DELAY GENERATOR

DESCRIBITION : IN THIS FUNCTION, TIMER/COUNTER0 IS

CONFIGURED AS DELAY GENERATOR WITH

 RESOLUTION OF 1 msec.

 NOTE: CLOCK/CYCLE = 6

 TH0TL0 = 65536 - ((11.0592 X 10^6)

X DELAY RESOLUTION)/(CLOCK/CYCLE)

AND CLOCK/CYBLE=6

 THEN TH0TL0 = 65536 - (11.0592 X

10^6) X 1X10^3)/6 = F8CCH

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 64

--*/

 void delay_msec(unsigned int count)

{

 unsigned int i;

 TMOD = 0X01;

 //CONFIGURE TIMER/COUNTER0 AS TIMER FOR MODE1

 (16-BIT COUNT)

 TR0 = 1;

 //START TIMER0

 for(i = 0; i < count; i++) //LOOP AS LONG AS REQUIRED

 DELAY IS ATTAINED

 {

 TH0 = 0XF8;

 //ASSIGN VALUE TO TIMER0 REGISTER TO GENERATE 1

 mSEC DELAY

 TL0 = 0XCC;

 while(!TF0);

 //LOOP HERE UNTIL TIMER0 OVERFLOW FLAG GETS SET

 TF0 = 0;

 //CLEAR TIMER0 OVERFLOW FLAG TO CHECK NEXT

 OVERFLOW

 }

 TR0 = 0;

 //STOP TIMER0

}

Output:

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 65

Beyond Syllabus

1. Write an C program to generate a up Saw tooth wave using DAC.

#include"reg51.h"

#define ADD_BUS P0

#define DAC_ADD

Sbit P20=P2^0;

Sbit P21=P2^1;

Sbit P22=P2^2;

Sbit P23=P2^3;

Sbit P24=P2^4;

Sbit P25=P2^5;

Sbit P26=P2^6;

Sbit P27=P2^7;

Sbit P30=P3^0;

Sbit P31=P3^1;

Sbit P32=P3^2;

Sbit P33=P3^3;

Sbit P34=P3^4;

Sbit P35=P3^5;

Sbit P36=P3^6;

Sbit P37=P3^7;

void main(void)

{

 unsigned char count = 0;

 ADD_BUS = DAC_ADD;

 while(1)

 {

 P3 = count;

 P20 = P37;

 P21 = P36;

 P22 = P35;

 P23 = P34;

 P24 = P33;

 P25 = P32;

 P26 = P31;

 P27 = P30;

 count++;

 }

 }

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 66

2. Write an C program to generate a Down Saw tooth wave using

DAC.

#define ADD_BUS P0

#define DAC_ADD

Sbit P20=P2^0;

Sbit P21=P2^1;

Sbit P22=P2^2;

Sbit P23=P2^3;

Sbit P24=P2^4;

Sbit P25=P2^5;

Sbit P26=P2^6;

Sbit P27=P2^7;

Sbit P30=P3^0;

Sbit P31=P3^1;

Sbit P32=P3^2;

Sbit P33=P3^3;

Sbit P34=P3^4;

Sbit P35=P3^5;

Sbit P36=P3^6;

Sbit P37=P3^7;

void main(void)

{

 unsigned char count = 0;

 ADD_BUS = DAC_ADD;

 while(1)

 {

 P3 = count;

 P20 = P37;

 P21 = P36;

 P22 = P35;

 P23 = P34;

 P24 = P33;

 P25 = P32;

 P26 = P31;

 P27 = P30;

 Count--;

 }

 }

BGS Institute of Technology Microcontroller Lab Manual(18ECL47)

Dept. of ECE 2019/2020 Page 67

VIVA VOCE Questions

 What is 8051 Microcontroller ?

 What are registers in Microcontroller ?

 List Interrupts available in 8051 Microcontroller.

 What is stack pointer in 8051 Microcontroller?

 List some features of 8051 Microcontroller.

 What is an Interrupt service routine in Microcontroller?

 What is an interrupt?

 Compare microprocessor and controller

 Compare risc and cisc

 What is the difference between timer and counter of microcontroller?

 Explain Serial communication flags and registers used in microcontroller.

 Explain addressing modes used in microcontroller programming

 What Is The Difference Between Harvard Architecture And Von Neumann Architecture?

 What Is The Width Of Data Bus?

 What Location Code Memory Space And Data Memory Space Begins

 How Much On Chip Ram Is Available?

 How Much Total External Data Memory That Can Be Interfaced To The 8051?

 What Is Special Function Registers (sfr)?

 What Are The Four Distinct Types Of Memory In 8051?

 Explain assembler directives

 Which Bit Of The Flag Register Is Set When Output Overflows To The Sign Bit?

 Explain branching instructions

 Explain conditional and unconditional jmp instructions

 Which 2 Ports Combine To Form The 16 Bit Address For External Memory Access?(

Port0 and port2)

